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Steady ion momentum in nonlinear plasma waves
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The analysis of a one-dimensional two-fluid hydrodynamic model with relativistic electrons and nonrelativ-
istic ions shows that the propagation of a nonlinear plasma wave is accompanied by a steady currentless plasma
drift. Ions, due to their larger mass, appear to be the main carriers of the average momentum of the plasma
wave. Two examples of nonlinear plasma waves generated by moving sources~short laser pulses and electron
bunches! are analyzed to show details of the energy and momentum conservation laws.
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I. INTRODUCTION

Nonlinear plasma waves have been the object of theo
ical interest in the 1950s, when some of their most rema
able properties were discovered. It was shown that the
quency of the one-dimensional nonrelativistic nonline
plasma wave does not depend on its amplitude@1,2# ~see also
Ref. @3# and references therein!. The dependence of the wav
frequency on the amplitude results from the relativistic var
tion of the electron mass@4#. The amplitude of a plasma
wave is limited by the wave-breaking phenomenon that
curs when the velocity of the electron fluid becomes equa
the phase velocity of the wave@4#.

A new growth of interest in nonlinear plasma waves w
stimulated by the idea of electron acceleration in powe
plasma waves generated by electron bunches~plasma wake-
field accelerator! or by short laser pulses~laser wake-field
accelerators! ~see Refs.@5,6# and references therein!. The
main attention was attracted to the studies of the depend
of the amplitude and the period of the generated plas
wave on the parameters of the source. Usually, in these
vestigations, plasma is considered as an electron fluid w
ions are treated as an immobile uniform background. S
an approximation seems to be reasonable but it leads to s
problem concerning the average momentum of a plas
wave. Indeed, it is evident that the laser pulses as well as
electron bunches while generating plasma waves lose
only energy but also momentum. The energy lost by
source is transferred to the energy of the electron oscillat
in a plasma. But the momentum lost by the source canno
transferred into the steady momentum of the electrons,
cause the steady electron flow would result in the nonlin
Doppler shift of the wave frequency@7# in contradiction with
the isochronism property of the nonrelativistic nonline
plasma wave@1–3#. On the first sight it looks as if the sourc
loses momentum but the generated wave does not ga
Hence, to clear up the situation with the wave momentu
we consider the propagation of one-dimensional nonlin
plasma wave without the usual restriction to immobile io
We show that independently of the generation method
propagation of the wave is accompanied by the appeara
of currentless steady drift of the plasma as a whole. Due
the larger mass of ions they carry the main part of the av
age momentum of the plasma wave. In the particular cas
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the laser wake field this fact was pointed out in Ref.@8#,
where it was shown that the momentum lost by the la
pulse is transferred into the wake-field wave and that its
erage momentum is carried by ions, no matter how he
they are.

However, in Ref.@8# this conclusion was obtained in th
approximation that the velocity of the laser pulse and, hen
the phase velocity of the generated plasma wave equals
speed of light.

In this paper we take into consideration the mobility
ions and investigate the general properties of a nonlin
plasma wave propagating in a plasma with arbitrary am
tude and phase velocity less than the speed of light. To il
trate how the moving source transfers the energy and
momentum to the nonlinear plasma wave, we consider
generation of the wake field by short laser pulses and
electron bunches.

II. THE ENERGY AND MOMENTUM OF PLASMA WAVES

In our investigation we use a set of cold two-fluid hydr
dynamics equations for relativistic electrons and nonrela
istic ions and restrict ourselves to the one-dimensional ge
etry,
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whereE is the charge separation electric field,e, m, ne , ve
and ei , mi , ni , v i are the charges, masses, concentratio
and velocities of electrons and ions, respectively,pe is the
©2002 The American Physical Society01-1
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momentum of the electron fluid per particle, related to
electron velocity by the formulave5pe /(mg), where

g5F11S pe

mcD
2G1/2

. ~6!

Herec is the speed of light.
From the set of Eqs.~1!–~5! one can easily obtain th

energy and the momentum conservation laws,

]W

]t
1

]S

]z
50, ~7!

]P

]t
1

]T

]z
50, ~8!

whereW, S, P, andT stand for the energy density, the ener
density flow, the momentum density, and the moment
density flow, respectively,

W5nemc2g1ni

miv i
2

2
1

E2

8p
, ~9!

S5nevemc2g1niv i

miv i
2

2
, ~10!

P5nepe1miniv i , ~11!

T5nepeve1miniv i
22

E2

8p
. ~12!

As we are interested in one-dimensional stationary plas
waves, we suppose that all hydrodynamic variables are fu
tions ofj5vpt2z only, wherevp is the phase velocity of the
plasma wave. In this approximation, integration of Eqs.~1!–
~4! gives

neS b2
ve

c D5ne0S b2
ve0

c D , ~13!

g2b
pe

mc
5g02b

pe0

mc
1c2c0 , ~14!

ni S b2
v i

c D5ni0S b2
v i0

c D , ~15!

S b2
v i

c D 2

522e~c2c0!1S b2
v i0

c D 2

, ~16!

where we assumed that the density and the velocity of e
trons and ions equalne0 , ve0 , ni0 , and v i0 , respectively,
at the point wherec5c0 . At the same pointg andpe attain
the values denoted asg05@11(pe0 /mc)2#1/2, and pe0

5mve0 /(12ve0
2 /c2)21/2, respectively. Hereb5vp /c is the

dimensionless phase velocity,e5(Zm/mi)!1 is a small pa-
rameter,Z is the ion charge number, andc is the electrostatic
potential determined by the relation
03640
e

a
c-

c-

eE

mc2 52
dc

dj
. ~17!

To establish the relations betweenne0 , ni0 , ve0 , andv i0 ,
let us assume that in Eqs.~13!–~16! the potential is a con-
stant,c5c0 , and that the perturbations in the plasma a
absent. We find that in the unperturbed plasmave5ve0 , ne
5ne0 , v i5v i0 , andni5ni0 . Assuming that in unperturbed
state the plasma is neutral and electrons and ions are a
we obtain thatne05Zni0 and ve05v i050. By means of
these relations Eqs.~13!–~16! are much simplified. One can
easily see that the electrons and the ions stop at the s
points where the potential of the plasma wave is equal toc0 .
Without the loss of generality, we may putc051.

The set of Eqs.~13!–~16! allows us to express all the
hydrodynamic variables as functions of the potentialc

g5gp
2@c2b~c22gp

22!1/2#, ~18!

ne

ne0
5

bgp
2@c2b~c22gp

22!1/2#

~c22gp
22!1/2 , ~19!

pe

mc
5gp

2@bc2~c22gp
22!1/2#, ~20!

ni

ni0
5

b

Ab222e~c21!
, ~21!

v i

c
5b2Ab222e~c21!, ~22!

wheregp5(12b2)21/2 is the relativistic factor determined
by the phase velocity of the plasma wave.

Substitutingne and ni from Eqs. ~19! and ~21! into the
Poisson equation~5! we obtain

d2c

dh2 5
bgp

2@c2b~c22gp
22!1/2#

~c22gp
22!1/2 2

b

Ab222e~c21!
,

~23!

whereh5kpj, kp5vp /c, andvp5(4pe2ne0 /m)1/2 is the
plasma frequency. The nonrelativistic limit of Eq.~23! was
used in Ref.@9# to study the influence of the ion motion o
the plasma wave frequency. For the case of immobile i
(e50), Eq. ~23! coincides with the well-known and muc
studied one~see, for example, Refs.@10–15#!. The Poisson
equation, taking into account relativistic motion of electro
and ions, was derived in Refs.@16,17#.

The first integral of this equation may be written in th
form

1

2 S dc

dh D 2

5I 02bgp
2@bc2~c22gp

22!1/2#

2
b

e
@b2Ab222e~c21!#, ~24!
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whereI 0 is the integration constant. Expanding Eqs.~23! and
~24! in power series of small parametere to the zeroth-order
terms, we obtain

d2c

dh2 5gp
2

@bc2~c22gp
22!1/2#

~c22gp
22!1/2 . ~25!

1

2 S dc

dh D 2

5I 02U0~c!, ~26!

where

U0~c!5gp
2@c2b~c22gp

22!1/2#21. ~27!

The functionU0(c) is real only forc>gp
21. In this region it

has its only extremum~the minimum! located atc51, where
U0(1)50. According to Eq.~26!, the amplitude of the
plasma wave electric field atc51 attains a maximum value
equal to

Emax5
mcvp

ueu
A2I 0. ~28!

However, the value ofI 0 cannot be arbitrarily large. The
periodic solutions to Eq.~26!, describing the nonlinea
plasma waves, exist only if the right-hand side of Eq.~26!
takes real positive values. Therefore, the magnitude ofI 0 is
limited by the conditionI 0<U0(gp

21) from which we find

I 0,max5gp21. ~29!

This magnitude being substituted into Eq.~28! gives the
well-known result of Ref.@4# for the wave-breaking ampli
tude of plasma wavesEwb . The influence of the ion motion
on the wave-breaking field is proportional to the small fac
e @17#.

Figure 1 shows a typical phase portrait of Eq.~25!, with
dc/dh plotted as a function ofc for several values of inte
gration constantI 0 . The dimensionless phase velocityb is
taken to be 0.9. The curve with the largest value ofI 0 corre-

FIG. 1. Phase portraits of Eq.~25! showingdc/dh as a function
of c for b50.9 and several values of integration constantI 0 .
12I 050.05; 22I 050.2, 32I 050.5; 42I 050.9; 52I 051.294.
03640
r

sponds to its maximal permissible value forb50.9 as deter-
mined by Eq.~29!. It bounds the region of possible rea
solutions of Eq.~25!.

Using Eqs.~18!–~22!, we can express all hydrodynam
variables appearing in the conservation laws in terms of
electrostatic potentialc. For example, the dimensionless e
ergy density can be written as

U5
W

ne0mc2 5
bg2

~c22gp
22!1/21

1

2 S dc

dh D 2

21

1b
@b2Ab222e~c21!#2

2eAb22e~c21!
. ~30!

Note that, while writing this expression, we subtracted
rest energy of electronsne0mc2 from the total energy. Analo-
gously, we can write expressions for dimensionless ene
density flowN, momentum densityQ, and momentum den
sity flow G

N5
S

ne0mc3 5
g~g2c!

~c22gp
22!1/21b

@b2Ab222e~c21!#3

2eAb222e~c21!
.

~31!

Q5
Pe1Pi

ne0mc
5Qe1Qi5

g~g2c!

~c22gp
22!1/2

1b
b2Ab222e~c21!

eAb222e~c21!
. ~32!

G5
T

mc2ne0
5

~g2c!2

b~c22gp
22!1/22

1

2 S dc

dh D 2

1
@b2Ab222e~c21!#2

eAb222e~c21!
. ~33!

The last terms of Eqs.~30!–~33! describe the ion contri-
bution to the corresponding quantities. Expanding th
terms in power series of the small parametere, we find that
these contributions are small everywhere except for Eq.~32!.
In the limit e!1 the ion momentumQi remains finite and
equalsb21(c21). Thus, we conclude that ions effect
essential only for the momentum density of the plasma wa
giving a finite contribution even in the limit of infinitely
heavy ions. For all the other hydrodynamic quantities,
well as in the Poisson equation, the influence of the ions m
be entirely neglected. As a result, Eqs.~30!–~33! take the
form

U5bgp
4

@c2b~c22gp
22!1/2#2

~c22gp
22!1/2 2gp

2@c2b~c22gp
22!1/2#

1I 0 , ~34!

N5bgp
4

@c2b~c22gp
22!1/2#@bc2~c22gp

22!1/2#

@~c22gp
22!1/2#

,

~35!
1-3
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Q5Qe1Qi

5bgp
4

@c2b~c22gp
22!1/2#@bc2~c22gp

22!1/2#

~c22gp
22!1/2

1b21~c21!, ~36!

G5bgp
4

@bc2~c22gp
22!1/2#2

~c22gp
22!1/2 1gp

2@c2b~c22gp
22!1/2#

212I 0 . ~37!

We emphasize once again that in these equations the
term appearing due to the ions isb21(c21) in Eq. ~36!.

All quantities characterizing the nonlinear plasma wa
may be presented as the sum of two terms. One of the
independent ofh and determines the average of the cor
sponding quantity. The other one is purely oscillatory and
integral of it over the plasma wavelength is zero.

To find the average parts of the quantities~34!–~37! we
calculate initially the wavelength of the plasma wavel,
which equals twice the distance between the two nea
minimum and maximum points of the potentialc. In kp

21

units it has the following form:

l52E
c2

c1 dc

dc/dh
, ~38!

wheredc/dh is determined by Eq.~26!, while c1 andc2

are the roots of the right-hand side of the equationdc/dh
50,

c6511I 06bA~11I 0!221. ~39!

Introducing a new integration variabley5g, we can re-
write Eq. ~38! in the form

l52&bE
1

11I 0 y dy

A~11I 02y!~y221!
. ~40!

Note, this integral as well as other integrals below may
reduced to elliptic integrals@18#.

It can be shown that the average energy density flow@Eq.
~35!#, the electron part of the average momentum density
Eq. ~36!, and the average current density are equal to z
To prove this statement, let us consider at first the ene
density flow~35!. The expression forN can be written in the
form

N5
d

dh F ~11I 0!
dc

dh
2

1

6 S dc

dh D 3G . ~41!

The integration of Eq.~41! over the plasma wavelength in
volves the quantitydc/dh taken at the extremum pointsc6

where it equals zero. We obtain the evident conclusion tha
the cold plasma model the average energy density flow of
nonlinear plasma wave is equal to zero. According to E
~36! and~35! the electron part of the momentum densityQe
is equal toN and hence, the average electron moment
03640
ly
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density also equals zero. Using continuity equations~1! and
~3!, the current density may be rewritten in the form

J5
encve1einiv i

ene0c
5b

d2c

dh2 . ~42!

It is evident that the average current density is also equa
zero. This relation is valid independently of the parametee.
It is worth noting that although the average electron curr
density and the average ion current density may differ fr
zero, their sum always equals zero. So, the current den
the electron momentum density, and the energy density fl
of plasma waves are purely oscillatory functions.

From Eq.~34! we find for the average energy density
plasma waves

^U&5
2

l E
c2

c1 U~c!dc

dc/dh
5I 0 . ~43!

Averaging Eq.~36! by means of the same procedure as abo
we obtain

^G&5
2&b

l E
1

11I 0 ~2y22~11I 0!y21!dy

A~11I 02y!~y221!
. ~44!

At last, the average momentum density is equal to

^Q&5^Qi&5^b21~c21!&

5
2&

l E
1

11I 0
2

~2y22y21!y dy

A~11I 02y!~y221!
. ~45!

Thus, the average energy density of the plasma wav
equal to the valueI 0 , which appears as an integration co
stant in Eq.~24!. We see also that the average energy den
and the average momentum density flow are connected
electrons, while the average momentum density appe
mainly due to ions.

Keeping in mind that the temporal and the spatial dep
dance of all quantities only relies onh5kp(vpt2z), we find
from the conservation laws~7! and ~8!,

bU2N5C1 , ~46!

bQ2G5C2 , ~47!

whereC1 andC2 are integration constants. Averaging the
equations and taking into account that^N&50, we obtain

b^U&5C1 , ~48!

b^Q&2^G&5C2 . ~49!

Substitutinĝ U&, ^Q&, and^G& from Eqs.~43!–~45! we find
the relations between the integration constants,

C15bI 0 , ~50!

C25I 0 . ~51!
1-4
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It should be emphasized that^Q& and ^G& in general case
are rather complicated functions ofI 0 , but they always sat-
isfy Eq. ~49!. In the limit I 0!1, Eqs.~44! and ~45! take the
forms

b^Q&5
3

2
I 0 , ~52!

^G&5
1

2
I 0 . ~53!

It is evident that these equations are in full agreement w
Eq. ~49!.

In this analysis, we assumed that the nonlinear plas
wave had some given amplitude determined by the cons
I 0 and were not interested in the process of the wave exc
tion. Now, on the basis of the general relations obtain
above we consider the conservation laws for the plas
waves that are generated by two different localized sou
propagating into plasmas.

III. GENERATION OF PLASMA WAVES BY SHORT
LASER PULSES

The low-frequency~as compared to the laser frequenc!
plasma response to the laser pulse action may be desc
by means of the set of hydrodynamic equations~see, for
example, Ref.@19#! consisting of Eqs.~1!, ~3!–~5!, and the
modified equation of the electron fluid motion

]pe

]t
1ve

]pe

]z
5eE2

mc2

4g

]uau2

]z
, ~54!

whereve5pe /(mg), andg is defined as

g5F11S pe

mcD
2

1
uau2

2 G1/2

. ~55!

Herea is the slowly varying amplitude~the envelope! of the
dimensionless high-frequency electron momentum in the
ser field. The high-frequency ion motion is entirely n
glected.

From the set of Eqs.~1!, ~3!–~5!, and~54!, the energy and
momentum conservation laws follow@8#

]W

]t
1

]S

]z
5

mc2ne

4g

]uau2

]t
, ~56!

]P

]t
1

]T

]z
52

mc2ne

4g

]uau2

]z
, ~57!

where W, S, P, and T are defined by Eqs.~9!–~12!. The
right-hand side terms in the conservation laws determine
energy and the momentum that the laser pulse loses to
erate the low-frequency plasma response@8#.

If the laser pulse is short enough that its energy and sh
change insignificantly over the time of its duration, we c
consider all the variables, characterizing the plasma
sponse, as functions of the variablej5vgt2z only, where
03640
h
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e
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e-

vg is the group velocity of the laser pulse~the so-called
quasistatic approximation@20#!. In contrast with the analysis
of Ref. @8#, we do not neglect the difference between t
group velocity of the pulse and the speed of lightc. Thus we
can express all hydrodynamic variables as functions of
potentialc,

g5gp
2@c2b$c22gp

22~11uau2/2!%1/2#, ~58!

ne

ne0
5

bgp
2@c2b$c22gp

22~11uau2/2!%1/2#

$c22gp
22~11uau2/2!%1/2 , ~59!

pe

mc
5gp

2@bc2$c22gp
22~11uau2/2!%1/2#, ~60!

wheregp51/A12b2 andb5vg /c. In the case we are con
sidering now, the phase velocity of the plasma wavevp is
equal to the group velocity of the laser pulsevg . The expres-
sions~21! and~22! for ni andv i remain valid in the problem
under consideration.

Substitutingne andni into the Poisson equation we obta

d2c

dh2 5
bgp

2@c2b$c22gp
22~11uau2/2!%1/2#

$c22gp
22~11uau2/2!%1/2

2
b

Ab222e~c21!
. ~61!

The ultrarelativistic limit (b51) of this equation was stud
ied in Ref. @8#. For the case of immobile ions (e50), Eq.
~61! was investigated in Refs.@21,22#. ~See also Ref.@23#
where the Poisson equation is considered including b
relativistic ion effects and high-frequency ion motion.!

Keeping in mind that the laser pulse is absent ath→
2`, we integrate Eq.~61! for a givenuau2 and obtain

1

2 S dc

dh D 2

52bgp
2@bc2Ac22gp

22~11uau2/2!#

2
b

e
@b2Ab222e~c21!#

1
b

4 E
2`

h dh8duau2/dh8

Ac22gp
22~11uau2/2!

. ~62!

An analytical solution may be found for the square shap
laser pulse withuau25const between the leading and trailin
edges of pulse. For such a pulse form in the immobile
approximation, the generation of plasma waves and wa
breaking phenomenon were investigated in Refs.@21,22#. In
particular, in Ref.@22# it was shown that the wave-breakin
electric field amplitude of the plasma wave in the pulse
gion is higher than that behind the pulse in the wake-fi
region.

In the limit e!1 behind the laser pulse (h→`), Eq. ~62!
takes a form identical to Eq.~26!, where instead of the pa
rameterI 0 , determining the amplitude of the plasma wav
stands the quantity
1-5
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I p5
b

4 E
2`

` dh8duau2/dh8

Ac22gp
22~11uau2/2!

, ~63!

that for once is determined by the intensity and the form
the laser pulse as well as by the potential variation inside
pulse. In accordance with the determination~43! the quantity
~63! characterizes the average energy density of the pla
wake wave.

As we have reduced the problem to Eq.~26!, all the re-
sults obtained in the preceding section concerning the pla
wave properties remain valid for the laser wake field.

Particularly, integrating conservation laws~56! and ~57!
in the quasistatic approximation and averaging results,
obtain in the wake-field region the equations analogous
Eqs.~48! and~49! whereC1 andC2 are equal tobI p andI p ,
respectively. These quantities describe the energy and
momentum transfer from the laser pulse to the plasma. N
that in a strong nonlinear plasma wave each term of
left-hand side of Eq.~49! is a complicated function ofI p , but
the difference of their values always equalsI p .

As in the preceding section,I p cannot exceed the thresh
old value given by the right-hand side of Eq.~29!, above
which the wave breaking takes place. In the square sha
pulse region this phenomenon was investigated in Ref.@22#.

IV. GENERATION OF PLASMA WAVES
BY ELECTRON BUNCHES

In this section we consider plasma waves generated b
electron bunch whose density is much smaller than tha
the background plasma. To investigate the wake-field gen
tion by one-dimensional electron bunches, it is necessar
take into account the bunch charge in the Poisson equa
~see, for example, Ref.@6# and references therein!

]E

]z
54p~enb1ene1eini !, ~64!

wherenb is the electron bunch density, which is consider
as given and unchangeable. As for the other hydrodyna
quantities, they satisfy Eqs.~1!–~4!. These equations to
gether with the Poisson equation~64! lead now to the con-
servation laws in the form

]W

]t
1

]S

]z
52evbnbE, ~65!

]P

]t
1

]T

]z
52enbE, ~66!

wherevb is the velocity of the electron bunch andW, S, P,
and T are defined by Eqs.~9!–~12!. The right-hand side
terms of these equations determine, respectively, the am
of the work executed by the bunch over the plasma and
force acting on the plasma. In the quasistatic approxima
and upon conditione!1, the Poisson equation takes th
form
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dh2 5Nb1gp
2

@bc2~c22gp
22!1/2#

~c22gp
22!1/2 , ~67!

where Nb5nb /ne0!1 and b5vb /c are the dimensionles
density and the velocity of the bunch,gp5A12b2. The first
integral of this equation is

1

2 S dc

dh D 2

511E
2`

h
dh8Nb~h8!

dc

dh8

2gp
2@c2b~c22gp

22!1/2#. ~68!

Behind the bunch (h→`), Eq. ~68! takes a form identical to
Eq. ~26! whereI 0 is replaced byI b ,

I b5E
2`

`

dh8Nb~h8!
dc

dh8
. ~69!

The magnitude ofI b depends on the electron bunch form a
on the variation of the potentialc inside the bunch.

So, the problem is reduced again to Eq.~26!. Hence, all
the results obtained in the previous sections concerning
plasma wave properties remain valid. The value ofI b deter-
mines all characteristics of the wave generated in the w
region. The maximum value ofI b is determined by the wave
breaking threshold and is given by the right-hand side of
~29!.

V. CONCLUSIONS

The nonlinear plasma wave excitation transfers into
plasma both an average momentum and an average en
The average energy is contained mainly in the plasma e
trons oscillating in the self-consistent electric field. The a
erage momentum, in the cold plasma approximation, app
in the form of a steady currentless plasma drift as a who
Owing to the larger mass, ions are the main carriers of
average momentum of a nonlinear plasma wave. In so
sense, this effect is similar to so-called acoustic wind,
steady mass transport in a nonlinear sound wave~see, for
example, Ref.@24#!.

This result may be extended to the case of a hot plas
Multiplying the electron and the ion continuity equations
the electron and ion charges, respectively, and summing
obtained equations lead to the charge continuity equat
Integrating it over the plasma wavelength and keeping
mind that in the initially neutral plasma the total charge ov
the plasma wavelength is equal to zero, one can see that
initially currentless plasma the average current density a
equals zero independently of the plasma temperature.
means that the absolute values of the average electron
ion current densities are equal to each other. Since the a
age electron~ion! momentum density differs from the ave
age electron~ion! current density by a multiplier propor
tional to the electron~ion! mass, it is evident that the averag
ion momentum density is much larger than the average e
tron momentum density except in the ultrarelativistic ca
when the effective electron and ion masses may be com
rable. So, we may conclude that even in a hot plasmas
1-6



rie

d
e
s

on

t

li

th
fo
ve

fre
xi-
rm

rs

a
s-
lts
te

o

is

he

te

n
sc
a

we

di-

e

STEADY ION MOMENTUM IN NONLINEAR PLASMA WAVES PHYSICAL REVIEW E 65 036401
average momentum density of plasma waves is car
mostly by ions.

Note, the plasma drift occurs with respect to the coor
nate frame connected with the rest plasma in the absenc
the wave. In the case of a plasma wave excited by mean
localized sources~laser pulses or electron bunches! the ref-
erence frame is connected with the immobile plasma in fr
of the source. The drift velocity depends on the ratiom/mi
and the plasma wave amplitude. In general case the la
dependence is rather complicated@see Eq.~45!# but it be-
comes quite simple in the limit of small plasma wave amp
tude whenI 0!1 (ueuEmax!mcvp). In such a limit we find
from Eqs. ~28!, ~32!, and ~52! the plasma drift velocityu
5^v i& as

u

c
5

3

4

Zm

mi
S ueuEmax

mcvp
2 D 2

. ~70!

The appearance of the plasma drift as well as the o
nonlinear effects due to the ion mobility are responsible
an additional nonlinear frequency shift of a plasma wa
This problem was investigated in Ref.@9# for the case of
plasma waves with nonrelativistic phase velocities (b!1).
In the Appendix we calculate the nonlinear plasma wave
quency shift including the ion effects in the linear appro
mation for an arbitrary wave phase velocity. It has the fo

v l2vp

vp
52

3

8
I 01

e

2
1

15

16
eI 0S 11

2

b2D , ~71!

where v l is the modified plasma frequency. Here the fi
term arises from the relativistic electron mass variation@4#;
the second term is a consequence of the reduced m
mmi /(m1mi) characterizing the frequency of the linear o
cillations of plasma with mobile ions; the third term resu
from the nonlinearity of the plasma wave that is connec
with the ion mobility. To conform our result to Ref.@9# it is
necessary to replaceI 0 by d0

2b2/4, whered0 is the amplitude
of the plasma wave in Ref.@9#, and consider the limitb
50. For a relativistic plasma wave with a phase velocity
the order of the speed of light (b.1) the dimensionless
nonlinear ion correction to the plasma frequency
(45/16)eI 0 .

To evaluate the plasma drift velocity, we consider t
plasma wave with the amplitudeEmax523108 V/cm propa-
gating in a hydrogen plasma with a density 1017 cm23 (I 0
51/2). From Eq.~70! we find that u.1.23107 cm/s. In
principle, this velocity may be detected by means of scat
ing of a probe laser beam.

APPENDIX

In what follows, we investigate the influence of the io
mass finiteness on the frequency of nonlinear plasma o
lations. In the linear approximation with respect to the sm
parametere determined by the electron to ion mass ratio
find from Eq.~24!
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2 S dc

dh D 2

5I 0112gp
2@c2b~c22gp

22!1/2#2
e

2b2 ~c21!2.

~A1!

Then the dimensionless plasma wavelength~38! is given by

l85&E
c28

c18 dcH I 0112gp
2@c2b~c22gp

22!1/2#

2
e

2b2 ~c21!2J 21/2

, ~A2!

where the prime in the left-hand side of the equation in
cates that Eq.~A2! contains the ion term unlike Eq.~40!,
where this term is omitted. The minimumc28 and maximum
c18 of the potentialc are determined from the equation

I 0115gp
2@c68 2b~c68

22gp
22!1/2#1

e

2b2 ~c68 21!2.

~A3!

Introducing in Eq. ~A2! a new variable of integrationx
5gp

2@c2b(c22gp
22)1/2#, we rewrite the formula for the

plasma wavelength in the forml85l12l2 , where

l65&E
1

x6

dxF16
bx

Ax221
G F ~x62x!1

e

2b2 $~x621

6bAx6
2 21!22~x216bAx221!2%G21/2

. ~A4!

Taking into consideration the conditione!1, we find from
Eq. ~A3! for the upper limits of integration in Eq.~A4!

x6511I 02
e

2b2 ~ I 06bA2I 01I 0
2!2. ~A5!

Using the same conditione!1, we present Eq.~A4! in
the form

l65&E
1

x6

dxS 16
bx

Ax221
D 1

Ax62x

3F12
e

2b2~x62x!
$~x6216bAx6

2 21!2

2~x216bAx221!2%G . ~A6!

In general case the integrals in Eq.~A6! are quite compli-
cated functions ofI 0 . To simplify our calculations, suppos
that I 0,1. Then from Eq.~A5! we obtain

x6511I 0~11e!6
&e

b
I 0

3/2. ~A7!

Keeping in mind that in the case of smallI 0 the integra-
tion region in Eq.~A6! is localized near the unity, we find
from Eq. ~A6! after some routine calculations
1-7
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l852pbF11
3

8
I 02

e

2
2

15

16
I 0eS 11

2

b2D G . ~A8!

The dimensionless plasma wavelengthl8 is connected
with the modified plasma frequencyv l by means of the for-
mula l852pbvp /v l that leads to Eq.~71!.
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